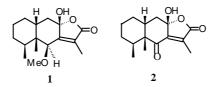
Two New Eremophilenolides from Ligularia fischeri

Wen Shu WANG, Kun GAO, Zhong Jian JIA*

Department of Chemistry, National Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou 730000


Abstract: Chemical investigation of *L. fischeri* afforded two new eremophilenolides, which were identified as 6β -methoxy- 8β -hydroxy-eremophil-7(11)-en- $12,8\alpha$ -olide **1**; 6-oxo- 8β -hydroxy-eremophil-7(11)-en- $12,8\alpha$ -olide **2**.

Keywords: Ligularia fischeri, compositae, eremophilenolide, sesquiterpene.

Ligularia fischeri has long been used as traditional medicine to relieve cough, invigorate the circulation of blood and stop pain¹. From the plant growing in Shengnongjia, Hubei, China, two new eremophilenolides have been isolated.

Compound **1** was needle crystals from petrol ether (60-90^oC), m.p. =148-150^oC. Its formula was determined as $C_{16}H_{24}O_4$ by ¹³C-NMR and DEPT spectra in accordance with the molecular ion peak m/z=280 in EIMS. The type of carbon signals (5×C, 3×CH, 4×CH₂, 4×CH₃) (**Table 2**) showed it had a bicyclic sesquiterpene skeleton bearing a methoxy, a hemi-ketal group and an α , β -unsaturated lactone ring which was verified by its IR absorptions. Three methyl signals δ 1.91 (s, 3H), δ 1.10 (s, 3H) and δ 0.76 (d, J=5.7Hz, 3H) indicated it was a characteristic 12,8 α -eremophilenoide^{2,3}. Comparing with the corresponding ¹³C-NMR signals of known eremophilenolides⁴, we attributed δ 103.68 (s), δ 80.46 (d) of this compound to hemi-ketal at C-8, and methoxy at C-6. Since there was no long range coupling between H -6 and the olefinic methyl (CH₃-13), H-6 should be in α -orientation⁵. Thus this compound was deduced as 6 β -methoxy-8 β hydroxy-eremophil-7(11)-en-12,8 α -olide.

Compound **2** was obtained as needle crystals by recrystallization from petrol ether (60-90⁰C), m.p.=216-218⁰C. The typical methyl signals δ 0.85 (d, J=6.8Hz, 3H), δ 1.13 (s, 3H) and δ 2.03 (s, 3H) in ¹H-NMR indicated an eremophilane skeleton^{2,3} obviously. Compared its NMR data with those of **1** (**Table1, 2**), it was deduced as another 12,8 α - eremophilenolide with 8 β hydroxy. The highest mass peak in EIMS m/z=264 indicated a formula of C₁₅H₂₀O₄ in good agreement with its ¹³C-NMR and DEPT spectral information. However, the lowest field signal δ 186.67 in ¹³C-NMR which had a correlation with δ 1.13 (CH₃-14, s, 3H) in HMBC showed a carbonyl in this compound at C-6. Therefore, the compound was identified as 6-oxo-8 β -hydroxy-eremophil-7(11)-en-12,8 α -olide.

Table 1. ¹H-NMR spectral data of compounds 1 and 2(400 MHz, CDCl₃, TMS as internal standard)

Н	1	2		
6	4.11 s			
9α	2.04-2.11 m	2.63 d (16.0)		
9β	2.04-2.11 m	2.30 dd (16.0,4.0)		
13	1.91 s	2.03 s		
14	1.10 s	1.13 s		
15	0.76 d (5.7)	0.85 d (6.8)		
OMe	3.37 s			

Table 2. ¹³C-NMR (DEPT) spectral data of compounds 1 and 2 (100MHz, CDCl₃)

С	1	2	DEPT	С	1	2	DEPT	
1	29.18	29.95	CH_2	9	39.01	39.80	CH ₂	
2	25.36	26.51	CH_2	10	34.30	38.78	CH	
3	30.38	30.85	CH_2	11	127.00	134.85	С	
4	28.91	35.81	CH	12	171.21	171.49	С	
5	42.87	47.01	С	13	8.35	9.00	CH ₃	
6	80.46	186.67^{*}	CH	14	16.28	20.01	CH_3	
7	154.07	162.93	С	15	16.09	16.18	CH ₃	
8	103.68	103.28	С	OMe	58.25		CH ₃	

* quaternary C in DEPT.

Acknowledgments

This work was financed by the National Natural Science Foundation of China and the Foundation of the State Education Commission of China for Doctoral Program.

References

- 1. Jiangsu College of New Medicine, 揂 *Dictionary of the Traditional Chinese Medicines*", **1977**, pp 2305, People祖 Hygiene Publisher,Beijing.
- 2. K. Naya, R. Kanazawa, M. Sawada, Bull. Chem. Soc. Jpn., 1975, 48, 3220.
- 3. K. Sugama, K. Hayashi, H. Mitsuhashi, *Phytochem.*, **1985**, 24 (7), 1531.
- 4. Y. Yaoita, M. Kikuchi, Chem. Pharm. Bull., 1995, 43 (10), 1738.
- 5. Y. Moriyama, T. Takahashi., Bull. Chem. Soc. Jpn., 1976, 49, 3196.

Received 18 January 1999